Document Type

Article

Publication Date

6-16-2008

Abstract

A new mechanism is proposed to explain the origin of negative differential resistance (NDR) in a strongly coupled single molecule-metal junction. A first-principles quantum transport calculation in a Fe-terpyridine linker molecule sandwiched between a pair of gold electrodes is presented. Upon increasing the applied bias, it is found that a new phase in the broken symmetry wave function of the molecule emerges from the mixing of occupied and unoccupied molecular orbitals. As a consequence, a nonlinear change in the coupling between the molecule and the lead is evolved resulting in NDR. This model can be used to explain NDR in other classes of metal-molecule junction devices.

Publisher's Statement

© 2008 American Physical Society. Article deposited here in compliance with publisher policy. Publisher's version of record: https://doi.org/10.1103/PhysRevLett.100.246801

Publication Title

Physical Review Letters

Version

Publisher's PDF

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.