Tundra fire effects mapping from synthetic aperture radar satellite data

Document Type

Conference Paper/Presentation

Publication Date



Traditional electro-optical, satellite-based methods of fire detection and monitoring are severely limited in the arctic due to persistent cloud cover and short growing seasons. Radar data can provide an alternative to traditional electro-optical methods due to all-weather imaging capabilities. Previous research in boreal forests and current evaluation in the Alaskan tundra shows that synthetic aperture radar (SAR) data can be used successfully to map burn perimeters and distinguish burned and unburned areas within the perimeter over a longer period of time than optical sensors. Results will be presented on the use of SAR data to measure spatial variations in the microwave signature across a fire scar as well as temporally throughout the growing season and across multiple years. The extensive historical archive of ERS-1 and -2 SAR data has been used to characterize three burned areas in the tundra regions of Alaska. These fires include the 1993 Wainwright fires in the north-western part of the North Slope (Fig 1), the 1999 Uvgoon fire in the Noatak National Preserve and 2007 Anaktuvuk River fire north of the Brooks Range in the central area of the North Slope. The data record includes pre-burn, burn, and post-burn observations until the fire scars are no longer discernible on the landscape. Our results show that burned areas are visible reliably five years post burn and then faintly apparent thereafter up to 12 or more years post-burn. Conversely, our analysis of electro-optical (Landsat) imagery shows near complete obscuration of the fire scar one year post-burn (Loboda et al. 2013). Also presented are results of an analysis of the effects of post-fire soil moisture, as measured in weather and climate datasets, on the SAR signature measured from the available image data archive. Reference: Loboda, T L, N H F French, C Hight-Harf, L Jenkins, M E Miller. 2013. Mapping fire extent and burn severity in Alaskan tussock tundra: An analysis of the spectral response of tundra vegetation to wildland fire. Remote Sens. Enviro. 134:194-209.

Publisher's Statement

© 2013 American Geophysical Union.

Publication Title

AGU Fall Meeting 2013