Self-consistent calculation of hyperfine fields at impurity sites in ferromagnetic host

Document Type


Publication Date



The spin-density functional formalism is used to study the hyperfine-field systematics of interstitial and substitutional impurities in a ferromagnetic host. Both the core- and conduction-electron contributions to the spin density at the impurity site are treated fully self-consistently. The unperturbed conduction electrons of the host metal are approximated by plane waves, the initial polarization of which is generated by smoothing the host-ion magnetic moments into a homogeneous magnetic field outside the impurity cell. A good qualitative agreement with experimental results is obtained for the hyperfine-field systematics of both light impurities (HNe) and heavy impurities (CdCs) in Ni. The inability of the mere jellium model to calculate the hyperfine field of + in magnetic materials is demonstrated. It is shown that the hyperfine field of + does not depend entirely on the local polarization of the host conduction electrons at the interstitial regions. The effect of the muon zero-point motion on the hyperfine field is discussed. © 1980 The American Physical Society.

Publication Title

Physical Review B