Title

Scaling percolation in thin porous layers

Document Type

Article

Publication Date

1-1-2011

Abstract

Percolation in porous media is a complex process that depends on the flow rate, material, and fluids properties as well as the boundary conditions. Traditional methods of characterizing percolation rely upon visual observation of a flow pattern or a pressure-saturation relation valid only in the limit of no flow. In this paper, the dynamics of fluid percolation in thin porous media is approached through a new scaling. This new scaling in conjunction with the capillary number and the viscosity ratio has resulted in a linear non-dimensional correlation of the percolation pressure and wetted area in time unique to each porous media. The effect of different percolation flow patterns on the dynamic pressure-saturation relation can be condensed into a linear correlation using this scaling. The general trend and implications of the scaling have been analyzed using an analytical model of a fluid percolating between two parallel plates and by experimental testing on thin porous media. Cathode porous transport layers (PTLs), also known as gas diffusion layers, of a proton exchange membrane (PEM) fuel cell having different morphological and wetting properties were tested under drainage conditions. Images of the fluid percolation evolution and the percolation pressure in the PTLs were simultaneously recorded. A unique linear correlation is obtained for each type of PTL samples using the new scaling. The correlation derived from this new scaling can be used to quantitatively characterize porous media with respect to percolation. While the characterization method discussed herein was developed for the study of porous materials used in PEM fuel cells, the method and scaling are applicable to any porous media. © 2011 American Institute of Physics.

Publication Title

Physics of Fluids

Share

COinS