Substrate profiles and expression of caffeoyl coenzyme A and caffeic acid O-methyltransferases in secondary xylem of aspen during seasonal development

Document Type


Publication Date



Seasonal expression of caffeoyl-CoA O-methyltransferase (EC was analyzed in aspen developing secondary xylem in parallel with caffeate O-methyltransferase (EC Enzyme activity and mRNA levels for both enzymes peaked in the middle of the growing season. These results strongly suggest that both forms of O-methyltransferase were actively participating in lignin precursor biosynthesis during the growing season. To determine the role of each enzyme form, xylem extracts from two days in the growing season were assayed with four substrates: Caffeoyl-CoA, 5-hydroxyferuloyl-CoA, caffeate acid and 5-hydroxyferulic acid. Recombinant forms of caffeoyl-CoA and caffeate O-methyltransferase were also assayed with these substrates. The recombinant enzymes have different substrate specificity with the caffeoyl-CoA O-methyltransferase being essentially specific for CoA ester substrates with a preference for caffeoyl-CoA, while caffeate O-methyltransferase utilized all four substrates with a preference for the free acid forms. We suggest that caffeoyl-CoA O-methyltransferase is likely to be responsible for biosynthesis of lignin precursors in the guaiacyl pathway and may represent a more primitive enzyme form leftover from very early land plant evolution. Caffeate O-methyltransferase is more likely to be responsible for lignin precursor biosynthesis in the syringyl pathway, especially since it can catalyze methylation of 5-hydroxyferuloyl-CoA quite effectively. This latter enzyme form then may be considered a more recently evolved component of the lignin biosynthetic pathways of the evolutionarily advanced plants such as angiosperms.

Publication Title

Plant Molecular Biology