Document Type


Publication Date



Department of Electrical and Computer Engineering


All optical systems that operate in or through the atmosphere suffer from turbulence induced image blur. Both military and civilian surveillance, gun sighting, and target identification systems are interested in terrestrial imaging over very long horizontal paths, but atmospheric turbulence can blur the resulting images beyond usefulness. This work explores the mean square error (MSE) performance of a multiframe blind deconvolution (MFBD) technique applied under anisoplanatic conditions for both Gaussian and Poisson noise model assumptions. The technique is evaluated for use in reconstructing images of scenes corrupted by turbulence in long horizontal-path imaging scenarios. Performance is evaluated via the reconstruction of a common object from three sets of simulated turbulence degraded imagery representing low, moderate, and severe turbulence conditions. Each set consisted of 1000 simulated turbulence degraded images. The MSE performance of the estimator is evaluated as a function of the number of images, and the number of Zernike polynomial terms used to characterize the point spread function. A Gaussian noise model-based MFBD algorithm reconstructs objects that showed as much as 40% improvement in MSE with as few as 14 frames and 30 Zernike coefficients used in the reconstruction, despite the presence of anisoplanatism in the data. An MFBD algorithm based on the Poisson noise model required a minimum of 50 frames to achieve significant improvement over the average MSE for the data set. Reconstructed objects show as much as 38% improvement in MSE using 175 frames and 30 Zernike coefficients in the reconstruction.

Publisher's Statement

© The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. Publisher’s version of record:

Publication Title

Optical Engineering

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.


Publisher's PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.