Characterization of the Cubilche debris avalanche deposit, a controversial case from the northern Andes, Ecuador

Document Type


Publication Date



© 2018 Elsevier B.V. In areas characterized by many volcanoes, identifying the source of a deposit may not be trivial. This becomes much more complicated when looking for the source of a debris avalanche deposit (DAD), the common products of catastrophic volcanic edifice collapses. To overcome this problem, in this work a methodology is proposed based on the integration of texture features and areal distribution of the deposit, comparison between the petrography of the coarser clasts within the DAD and of the proximal products, grain-size analysis, and the volumetric estimations of the deposit and the volume missing from the volcanic edifice. This methodology has been tested to a DAD occurred near the city of Ibarra (Imbabura Province; Northern Ecuador), having a controversial source. Two main volcanic edifice are located in proximity of the DAD, the Cubilche volcano (3826 m.a.s.l.), located immediately south of and east of the colossal dormant Imbabura volcano. The former displays a sharp horseshoe-shaped scar towards the north and inside this post-collapse edifice, that we name old Cubilche volcano (OCV), is located the young Cubilche volcano (YCV) that refilled a portion of the collapse scar and partially covered the southern flank of the OCV. Detailed knowledge of Cubilche volcano is critical because of its close proximity and interspersed activity with Imbabura volcano. In fact, Imbabura most recent edifice was built over the northwestern slope of the OCV and partially covered it. Recent studies linked the studied DAD to both Imbabura volcano as a product of its northern sector collapse, as well as neighboring Cubilche volcano. Our data points to Cubilche as the most likely source for this DAD. A perspective view of the shaded relief image of the present day OCV shows that the morphology of the volcano is well-preserved on its southern, eastern, and western flanks. This allows us to reconstruct the morphology of the OCV previous to the collapse through interpolation of elevation and altitude data of preserved flanks. A DEM of the present day topography was used for extrapolating the morphology. Using similar methodology, the post collapse base of the amphitheater was reconstructed by removing the relief of the present day YCV. The reconstructed topography of the OCV shows that it could have been a symmetric cone, reaching a maximum elevation of ~4100 m.a.s.l. with a lack volume of ~3.5 km3. Based on this scenario, the deposit originated from the OCV main collapse should have a volume > 3–3.5 km3 in accordance to the volume calculated for the studied DAD.

Publication Title

Journal of Volcanology and Geothermal Research