First-principles study of the optical properties of BeO in its ambient and high-pressure phases

Document Type

Article

Publication Date

5-1-2009

Abstract

Optical properties such as the dynamic dielectric function, reflectance, and energy-loss function of beryllium oxide (BeO) in its ambient and high-pressure phases are reported for a wide energy range of 0-50 eV. The calculations of optical properties employ first-principles methods based on all-electron density functional theory together with sum over states and finite-field methods. Our results show subtle differences in the calculated optical properties of the wurtzite, zincblende, rocksalt and CsCl phases of BeO, which may be attributed to the higher symmetry and packing density of these phases. For the wurtzite phase, the calculated band gap of 10.4 eV corresponds well with the experimental value of 10.6 eV and the calculated (average) index of refraction of 1.70 shows excellent agreement with the experimental value of 1.72. © 2009 Elsevier Ltd. All rights reserved.

Publication Title

Journal of Physics and Chemistry of Solids

Share

COinS