Title

Stochastic rainfall modeling in West Africa: Parsimonious approaches for domestic rainwater harvesting assessment

Document Type

Article

Publication Date

10-30-2008

Abstract

Several parsimonious stochastic rainfall models are developed and compared for application to domestic rainwater harvesting (DRWH) assessment in West Africa. Worldwide, improved water access rates are lowest for Sub-Saharan Africa, including the West African region, and these low rates have important implications on the health and economy of the region. Domestic rainwater harvesting (DRWH) is proposed as a potential mechanism for water supply enhancement, especially for the poor urban households in the region, which is essential for development planning and poverty alleviation initiatives. The stochastic rainfall models examined are Markov models and LARS-WG, selected due to availability and ease of use for water planners in the developing world. A first-order Markov occurrence model with a mixed exponential amount model is selected as the best option for unconditioned Markov models. However, there is no clear advantage in selecting Markov models over the LARS-WG model for DRWH in West Africa, with each model having distinct strengths and weaknesses. A multi-model approach is used in assessing DRWH in the region to illustrate the variability associated with the rainfall models. It is clear DRWH can be successfully used as a water enhancement mechanism in West Africa for certain times of the year. A 200 L drum storage capacity could potentially optimize these simple, small roof area systems for many locations in the region. © 2008 Elsevier B.V. All rights reserved.

Publication Title

Journal of Hydrology

Share

COinS