Document Type

Article

Publication Date

9-24-2018

Department

College of Forest Resources and Environmental Science

Abstract

Worldwide, native species increasingly contend with the interacting stressors of habitat fragmentation and invasive species, yet their combined effects have rarely been examined. Direct negative effects of invasive omnivores are well documented, but the indirect effects of resource competition or those caused by predator avoidance are unknown. Here we isolated and examined the independent and interactive effects of invasive omnivorous Black rats (Rattus rattus) and forest fragment size on the interactions between avian predators and their arthropod prey. Our study examines whether invasive omnivores and ecosystem fragment size impact: 1) the vertical distribution of arthropod species composition and abundance, and 2) the vertical profile of foraging behaviors of five native and two non-native bird species found in our study system. We predicted that the reduced edge effects and greater structural complexity and canopy height of larger fragments would limit the total and proportional habitat space frequented by rats and thus limit their impact on both arthropod biomass and birds’ foraging behavior. We experimentally removed invasive omnivorous Black rats across a 100-fold (0.1 to 12 ha) size gradient of forest fragments on Hawai‘i Island, and paired foraging observations of forest passerines with arthropod sampling in the 16 rat-removed and 18 control fragments. Rat removal was associated with shifts in the vertical distribution of arthropod biomass, irrespective of fragment size. Bird foraging behavior mirrored this shift, and the impact of rat removal was greater for birds that primarily eat fruit and insects compared with those that consume nectar. Evidence from this model study system indicates that invasive rats indirectly alter the feeding behavior of native birds, and consequently impact multiple trophic levels. This study suggests that native species can modify their foraging behavior in response to invasive species removal and presumably arrival through behavioral plasticity.

Publisher's Statement

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Publisher’s version of record: https://doi.org/10.1371/journal.pone.0202869

Publication Title

PLoS ONZE

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.