Title

Simulation of the Contribution of Phosphorus-Containing Minerogenic Particles to Particulate Phosphorus Concentration in Cayuga Lake, New York

Document Type

Article

Publication Date

11-1-2016

Abstract

© 2016, Springer International Publishing Switzerland. Phosphorus (P) associated with minerogenic particles delivered from watersheds can interfere with the common use of total P (TP) concentration as a trophic state metric in lacustrine systems, particularly proximate to tributary entries, because of its limited bioavailability. The concentration of unavailable minerogenic particulate P (PPm/u), where it is noteworthy, should be subtracted from TP in considering primary production potential and trophic state levels. A first mass balance model for PPm/u is developed and tested here for Cayuga Lake, New York. This is supported by a rare combination of detailed information for minerogenic particle level dynamics for the tributaries and lake, the bioavailability of tributary particulate P (PP), and previously tested hydrothermal/transport and minerogenic particle concentration submodels. The central roles of major runoff events and localized tributary loading at one end of the lake in driving patterns of PPm/u in time and space are well simulated, including (1) the higher PPm/u concentrations in a shallow area (“shelf”) adjoining the inputs, relative to pelagic waters, following runoff events, and (2) the positive dependence of the shelf increases on the magnitude of the event. The PPm/u component of P was largely responsible for the higher summer average TP on the shelf vs. pelagic waters and the exceedance of a TP water quality limit on the shelf. The effective simulation of PPm/u allows an appropriate adjustment of TP values to avoid overrepresentation of potential primary production levels.

Publication Title

Water, Air, and Soil Pollution

Share

COinS