Local Discontinuous Galerkin Method for the Keller-Segel Chemotaxis Model

Document Type

Article

Publication Date

12-2017

Department

Department of Mathematical Sciences

Abstract

In this paper, we apply the local discontinuous Galerkin (LDG) method to 2D Keller–Segel (KS) chemotaxis model. We improve the results upon (Epshteyn and Kurganov in SIAM J Numer Anal, 47:368–408, 2008) and give optimal rate of convergence under special finite element spaces before the blow-up occurs (the exact solutions are smooth). Moreover, to construct physically relevant numerical approximations, we consider P1 LDG scheme and develop a positivity-preserving limiter to the scheme, extending the idea in Zhang and Shu (J Comput Phys, 229:8918–8934, 2010). With this limiter, we can prove the L1-stability of the numerical scheme. Numerical experiments are performed to demonstrate the good performance of the positivity-preserving LDG scheme. Moreover, it is known that the chemotaxis model will yield blow-up solutions under certain initial conditions. We numerically demonstrate how to find the approximate blow-up time by using the L2-norm of the L1-stable numerical solution.

Publication Title

Journal of Scientific Computing

Share

COinS