Phosphorus translocation by red deer on a subalpine grassland in the central European Alps

Document Type


Publication Date



We examined the role of red deer (Cervus elaphus L.) in translocating phosphorus (P) from their preferred grazing sites (short-grass vegetation on subalpine grasslands) to their wider home range in a subalpine grassland ecosystem in the Central European Alps. Phosphorus was used because it is the limiting nutrient in these grasslands. When we compared P removal of aboveground biomass due to grazing with P input due to the deposit of feces on a grid of 268 cells (20 m × 20 m) covering the entire grassland, we detected distinct spatial patterns: the proportion of heavily grazed short-grass vegetation increased with increasing soil-P pool, suggesting that red deer preferably grazed on grid cells with a higher soil-P pool. Biomass consumption related to increased proportion of short-grass vegetation, and therefore P removal, increased with increasing soil-P pool. However, within the two vegetation types (short-grass and tall-grass), consumption was independent from soil-P pool. In addition, P input rates from defecation increased with increasing soil-P pool, resulting in a constant mean net P loss of 0.083 kg ha-1 y-1 (0.03%-0.07% of soil-P pool) independent of both soil-P pool and vegetation type. Thus, there was no P translocation between grid cells with different soil-P pools or between short-grass and tall-grass vegetation. Based on these results, it is likely that the net rate of P loss is too small to explain the observed changes in vegetation composition from tall-herb/meadow communities to short-grass and from tall-grass to short-grass on the grassland since 1917. Instead, we suggest that the grazing patterns of red deer directly induced succession from tall-herb/meadow communities to short-grass vegetation. Yet, it is also possible that long-term net soil-P losses indirectly drive plant succession from short-grass to tall-grass vegetation, because nutrient depletion could reduce grazing pressure in short-grass vegetation and enable the characteristic tall-grass species Carex sempervirens Vill. to establish. © 2006 Springer Science+Business Media, Inc.

Publication Title