Document Type


Publication Date



Department of Materials Science and Engineering


Due to the axisymmetric nature of many engineering problems, bi-dimensional axisymmetric finite elements play an important role in the numerical analysis of structures, as well as advanced technology micro/nano-components and devices (nano-tubes, nano-wires, micro-/nano-pillars, micro-electrodes). In this paper, a straightforward C0-continuous gradient-enriched finite element methodology is proposed for the solution of axisymmetric geometries, including both axisymmetric and non-axisymmetric loads. Considerations about the best integration rules and an exhaustive convergence study are also provided along with guidances on optimal element size. Moreover, by applying the present methodology to cylindrical bars characterised by a circumferential sharp crack, the ability of the present methodology to remove singularities from the stress field has been shown under axial, bending, and torsional loading conditions. Some preliminary results, obtained by applying the proposed methodology to notched cylindrical bars, are also presented, highlighting the accuracy of the methodology in the static and fatigue assessment of notched components, for both brittle and ductile materials. Finally, the proposed methodology has been applied to model the unit cell of the anode of Li-ion batteries showing the ability of the methodology to account for size effects.

Publisher's Statement

© 2016, The Author(s). Publisher’s version of record:

Publication Title

Acta Mechanica

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Publisher's PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.