Title

Comparison of phenotypic and genetic clone delineation in quaking aspen, Populus tremuloides

Document Type

Article

Publication Date

10-1-2016

Abstract

© 2016, Springer-Verlag Berlin Heidelberg. Key message: Clonal delineation at nuclear microsatellites and phenotypic traits showed high correspondence and revealed an important role of both sexual and clonal reproduction for stand genetic structure. Abstract: Quaking aspen (Populus tremuloides Michx.) grows throughout the northern and central portions of North America. Reproduction occurs both sexually via seeds and clonally from root suckers. Clonal delineation using morphological/phenological traits, and more recently, highly variable nuclear microsatellites have shown considerable variation in the size of clonal assemblies, and the relative importance of sexual versus clonal reproduction across the species range. In order to provide reliable estimates of genet size (N/G; ramets per sampled genet) and genotypic diversity (G/N; genets/ramets), and to compare genetic and phenotypic clone delineation, we characterized 181 sampled stems (ramets) at seven nuclear microsatellites, and morphological and phenological traits from six clones (genet size ≥11). Genotypic diversity was moderate (G/N = 0.18) and within the range reported in other studies across North America. Multivariate statistics revealed a high correspondence between genetic and phenotypic clone delineation, both with and without predefined genetic groups (94.2 %, 81.7 %). Moderate average genet size (5.6 ramets per genet) and the occurrence of genetically distinct single-ramet genets surrounded by larger genets suggested intermediate levels of sexual reproduction contributing to the genetic structure of this stand. Significant differences among genets were found for phenological and morphological traits such as bark thickness and leaf shape. However, most clones showed no significant differences in diameter growth which was likely caused by poor drainage in this high clay soil that inhibited the expression of genetic differences in growth.

Publication Title

Trees - Structure and Function

Share

COinS