Environmental life cycle assessment of methane biocatalysis: Key considerations and potential impacts

Document Type


Publication Date



Department of Chemical Engineering


Biocatalysis offers the potential to utilize stranded sources of methane to make a wide range of fuels and chemicals. Environmental impacts are one set of criteria on which any new biocatalysis project will likely be judged, and it will be important to consider the environmental impacts of proposed new technologies across the entire life cycle of the new system. Life cycle assessment is a valuable tool that has been employed to evaluate and compare environmental impacts in several new bio-based fuel and chemical production systems. The considerations important in each key unit operation involved with a general methane biocatalysis system are discussed. A case study is briefly introduced to illustrate the potential impacts of key decisions that could be made across the entire life cycle of a potential methane biocatalysis system. The case study illustrates that through a combination of careful methane gas sourcing, innovative bioreactor technology, and an integrated system designed to recover and reuse non-lipid biomass, a system could be developed to produce bio-based liquid transportation fuels with clear greenhouse gas emissions benefits, in comparison to conventional diesel fuel. Opportunities to develop biorefinery systems involving production and recovery of high-value coproducts like ectoine may also shift the distribution of environmental impacts among products in significant ways, which will require careful consideration of the technical operations and regulatory regime influencing the biorefinery system.

Publication Title

Methane Biocatalysis: Paving the Way to Sustainability