Document Type


Publication Date



Great Lakes Research Center; Department of Biological Sciences; Department of Civil, Environmental, and Geospatial Engineering; Department of Social Sciences


Over a century ago, shoreline copper mills sluiced more than 64 million metric tonnes of tailings into Lake Superior, creating a “halo” around the Keweenaw Peninsula with a buried copper peak. Here we examine how tailings from one of the smaller mills (Mass Mill, 1902–1919) spread as a dual pulse across southern Keweenaw Bay and onto tribal L'Anse Indian Reservation lands. The fine (“slime clay”) fraction dispersed early and widely, whereas the coarse fraction (stamp sands) moved more slowly southward as a black sand beach deposit, leaving scattered residual patches. Beach stamp sands followed the path of sand eroding from Jacobsville Sandstone bluffs, mixing with natural sands and eventually adding onto Sand Point, at the mouth of L'Anse Bay. Dated sediment cores and a multi-elemental analysis of the buried Cu-rich peak in L'Anse Bay confirm a tailings origin. Copper concentrations are declining in the bay, yet copper fluxes remain elevated. The spatial and temporal studies underscore that enhanced sediment and copper fluxes around the Keweenaw Peninsula largely reflect historic mining releases. Mercury is correlated with copper, yet mercury concentrations and fluxes remain relatively low in Keweenaw Bay compared to nearby Superfund sites (Torch and Portage Lakes), perhaps reflecting the absence of smelters on Keweenaw Bay. Tribal efforts to remediate contamination are progressing, but are hindered by recent high water levels plus severe storms. The long-term repercussions of Mass Mill discharges caution against mine companies discharging even small amounts of tailings into coastal environments.

Publisher's Statement

© 2020 The Authors. Published by Elsevier B.V. on behalf of International Association for Great Lakes Research. Publisher’s version of record:

Publication Title

Journal of Great Lakes Research


Publisher's PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.