Authors

A. Albert, Los Alamos National Laboratory
R. Alfaro, Universidad Nacional Autónoma de México
C. Alvarez, Universidad Autónoma de Chiapas
J. C. Arteaga-Velázquez, Universidad Michoacana de San Nicolás de Hidalgo
K. P. Arunbabu, Universidad Nacional Autónoma de México
D. Avila Rojas, Universidad Nacional Autónoma de México
H. A.Ayala Solares, Pennsylvania State University
V. Baghmanyan, Henryk Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences
E. Belmont-Moreno, Universidad Nacional Autónoma de México
S. Y. Benzvi, University of Rochester
C. Brisbois, University of Maryland
K. S. Caballero-Mora, Universidad Autónoma de Chiapas
T. Capistrán, Instituto Nacional de Astrofisica Optica y Electronica
A. Carramiñana, Instituto Nacional de Astrofisica Optica y Electronica
S. Casanova, Henryk Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences
U. Cotti, Universidad Michoacana de San Nicolás de Hidalgo
J. Cotzomi, Benemerita Universidad Autonoma de Puebla
E. De la Fuente, Universidad de Guadalajara
C. De León, Universidad Michoacana de San Nicolás de Hidalgo
B. L. Dingus, Los Alamos National Laboratory
M. A. Duvernois, University of Wisconsin-Madison
J. C. Díaz-Vélez, Universidad de Guadalajara
R. W. Ellsworth, University of Maryland
K. L. Engel, University of Maryland
C. Espinoza, Universidad Nacional Autónoma de México
H. Fleischhack, Michigan Technological UniversityFollow
N. Fraija, Universidad Nacional Autónoma de México
A. Galván-Gámez, Universidad Nacional Autónoma de México
J. A. García-González, Universidad Nacional Autónoma de México
F. Garfias, Universidad Nacional Autónoma de México
M. M. González, Universidad Nacional Autónoma de México
J. A. Goodman, University of Maryland
B. Hona, Michigan Technological University
D. Huang, Michigan Technological University
Petra Huentemeyer, Michigan Technological UniversityFollow

Document Type

Article

Publication Date

4-1-2020

Department

Department of Physics

Abstract

Primordial Black Holes (PBHs) may have been created by density fluctuations in the early Universe and could be as massive as > 109 solar masses or as small as the Planck mass. It has been postulated that a black hole has a temperature inversely-proportional to its mass and will thermally emit all species of fundamental particles via Hawking Radiation. PBHs with initial masses of ∼ 5 × 1014 g (approximately one gigaton) should be expiring today with bursts of high-energy gamma radiation in the GeV-TeV energy range. The High Altitude Water Cherenkov (HAWC) Observatory is sensitive to gamma rays with energies of ∼300 GeV to past 100 TeV, which corresponds to the high end of the PBH burst spectrum. With its large instantaneous field-of-view of ∼ 2 sr and a duty cycle over 95%, the HAWC Observatory is well suited to perform an all-sky search for PBH bursts. We conducted a search using 959 days of HAWC data and exclude the local PBH burst rate density above 3400 pc-3 yr-1 at 99% confidence, the strongest limit on the local PBH burst rate density from any existing electromagnetic measurement.

Publisher's Statement

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of Sissa Medialab. Publisher’s version of record: https://doi.org/10.1088/1475-7516/2020/04/026

Publication Title

Journal of Cosmology and Astroparticle Physics

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Version

Publisher's PDF

Included in

Physics Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.