Test Gene-Environment Interactions for Multiple Traits in Sequencing Association Studies

Document Type


Publication Date



Department of Mathematical Sciences


Motivation: The risk of many complex diseases is determined by an interplay of genetic and environmental factors. The examination of gene-environment interactions (G×Es) for multiple traits can yield valuable insights about the etiology of the disease and increase power in detecting disease-associated genes. However, the methods for testing G×Es for multiple traits are very limited. Method: We developed novel approaches to test G×Es for multiple traits in sequencing association studies. We first perform a transformation of multiple traits by using either principal component analysis or standardization analysis. Then, we detect the effects of G×Es using novel proposed tests: testing the effect of an optimally weighted combination of G×Es (TOW-GE) and/or variable weight TOW-GE (VW-TOW-GE). Finally, we employ Fisher's combination test to combine the p values. Results: Extensive simulation studies show that the type I error rates of the proposed methods are well controlled. Compared to the interaction sequence kernel association test (ISKAT), TOW-GE is more powerful when there are only rare risk and protective variants; VW-TOW-GE is more powerful when there are both rare and common variants. Both TOW-GE and VW-TOW-GE are robust to directions of effects of causal G×Es. Application to the COPDGene Study demonstrates that our proposed methods are very effective. Conclusions: Our proposed methods are useful tools in the identification of G×Es for multiple traits. The proposed methods can be used not only to identify G×Es for common variants, but also for rare variants. Therefore, they can be employed in identifying G×Es in both genome-wide association studies and next-generation sequencing data analyses.

Publisher's Statement

© 2020 S. Karger AG, Basel. All rights reserved. Publisher’s version of record: https://doi.org/10.1159/000506008

Publication Title

Human Heredity