Document Type


Publication Date



Department of Civil, Environmental, and Geospatial Engineering


The Persian/Arabian Gulf is the most important region for seawater desalination. Surrounding countries produce about 50% of global desalinated seawater. If Gulf salinity significantly rises because of desalination effluent (brine), marine ecosystems and the water supply for many population centers will be threatened. In order to quantify current and future impacts of seawater desalination on Gulf salinity and avoid costly environmental problems, it is vital to first examine the present Gulf salinity state and its response to salinity perturbation (i.e., determine its stability). Here, using a coupled Gulf-Atmosphere numerical climate model, we test the hypothesis that the Gulf has a single stable equilibrium state under the current climate. Simulations with different initializations under identical external forcing show that the natural coupled Gulf-Atmosphere system may exhibit a mixture of unstable and stable equilibrium salinity states. When continuous salinity perturbation is added to the simulations, results show that the present Gulf equilibrium state, characterized by annual mean basin-average salinity of about 40.5 g/kg, is stable. We conclude that Gulf basin salinity is resilient to present brine discharge activities under the current climate.

Publisher's Statement

© Copyright © 2020 Ibrahim, Xue and Eltahir.

Publication Title

Frontiers in Marine Science

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Publisher's PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.