Document Type

Article

Publication Date

11-28-2017

Department

School of Forest Resources and Environmental Science

Abstract

Background

Bark plays important roles in photosynthate transport and storage, along with physical and chemical protection. Bark texture varies extensively among species, from smooth to fissured to deeply furrowed, but its genetic control is unknown. This study sought to determine the main genomic regions associated with natural variation in bark features and stem diameter. Quantitative trait loci (QTL) were mapped using an interspecific pseudo-backcross pedigree (Populus trichocarpa x P. deltoides and P. deltoides) for bark texture, bark thickness and diameter collected across three years, two sites and three biological replicates per site.

Results

QTL specific to bark texture were highly reproducible in shared intervals across sites, years and replicates. Significant positive correlations and co-localization between trait QTL suggest pleiotropic regulators or closely linked genes. A list of candidate genes with related putative function, location close to QTL maxima and with the highest expression level in the phloem, xylem and cambium was identified.

Conclusion

Candidate genes for bark texture included an ortholog of Arabidopsis ANAC104 (PopNAC128), which plays a role in lignified fiber cell and ray development, as well as Pinin and Fasciclin (PopFLA) genes with a role in cell adhesion, cell shape and migration. The results presented in this study provide a basis for future genomic characterization of genes found within the QTL for bark texture, bark thickness and diameter in order to better understand stem and bark development in Populus and other woody perennial plants. The QTL mapping approach identified a list of prime candidate genes for further validation using functional genomics or forward genetics approaches.

Publisher's Statement

© The Author(s). 2017. Publisher’s version of record: https://doi.org/10.1186/s12870-017-1166-4

Publication Title

BMC Plant Biology

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.