Document Type


Publication Date



Department of Civil, Environmental, and Geospatial Engineering


Strength and fatigue life are essential parameters of pavement structure design. To accurately determine the pavement structure resistance of rubber asphalt mixture, the strength tests at various temperatures, loading rate, and fatigue tests at different stress levels were conducted in this research. Based on the proposed experiments, the change law of rubber asphalt mixture strength with different temperatures and loading rates was revealed. The phenomenological fatigue equation of rubber asphalt mixture was established. The genetic algorithm optimized backpropagation neural network (GA-BPNN) is highly reliable for optimizing production processes in civil engineering, and it has a remarkable application effect. A GA-BPNN strength and fatigue life prediction model was created in this study. The reliability of the prediction model was verified through experiments. The results showed that the rubber asphalt mixture strength decreases and increases with the increase of temperature and loading rate, respectively. The goodness of fit of the rubber asphalt mixture strength and fatigue life prediction model based on the GA-BPNN could reach 0.989 and 0.998, respectively. The indicators of the fatigue life prediction model are superior to the conventional phenomenological fatigue equation model. The GA-BPNN provides an effective method for predicting the rubber asphalt mixture strength and fatigue life, which significantly improves the accuracy of the resistance design of the rubber asphalt pavement structure.

Publisher's Statement

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( Publisher’s version of record:

Publication Title


Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Publisher's PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.