Highly conductive porous Na-embedded carbon nanowalls for high-performance capacitive deionization

Document Type


Publication Date



Department of Materials Science and Engineering


Highly conductive porous Na-embedded carbon nanowalls (Na@C), which were recently invented, have exhibited excellent performance for dye-sensitized solar cells and electric double-layer capacitors. In this work, Na@C was demonstrated as an excellent electrode material for capacitive deionization (CDI). In a three-electrode configuration system, the specific capacity of the Na@C electrodes can achieve 306.4 F/g at current density of 0.2 A/g in 1 M NaCl, which is higher than that (235.2 F/g) of activated carbon (AC) electrodes. Furthermore, a high electrosorption capacity of 8.75 mg g−1 in 100 mg/L NaCl was obtained with the Na@C electrodes in a batch-mode capacitive deionization cell. It exceeds the electrosorption capacity (4.08 mg g−1) of AC electrodes. The Na@C electrode also showed a promising cycle stability. The excellent performance of Na@C electrode for capacitive deionization (CDI) can be attributed to its high electrical conductivity and large accessible surface area.

Publisher's Statement

© 2018 Elsevier Ltd. Publisher’s version of record: https://doi.org/10.1016/j.jpcs.2018.02.001

Publication Title

Journal of Physics and Chemistry of Solids