New chemistry for new material: Highly dense mesoporous carbon electrode for supercapacitors with high areal capacitance

Document Type


Publication Date



Department of Materials Science and Engineering


The discovery of new chemical reactions plays an important role in new material synthesis. For electric double-layer capacitors, a high packing density and a large surface area are required, but contradiction for current porous carbon electrodes. This causes a critical trade-off issue among gravimetric, areal, and volumetric capacitances. Herein, a new chemistry was found to synthesize a new type of carbon material, namely, a new reaction between CO and Li directly produces three-dimensional dense mesoporous carbon (DMPC). Its high packing density of 1.94 g/cm3 is much larger than those (0.05–0.7 g/cm3) of other porous carbon materials. Consequently, the aqueous electric double-layer capacitors with DMPC electrodes, which have 11.5 mg/cm2 mass loading, can reach high areal capacitance (2.15 F/cm2 at 1 A/g). It also exhibited large volumetric and gravimetric capacitances (220.5 F/cm3 and 205.2 F/g) without sacrificing areal capacitance. Furthermore, after 5000 charge/discharge cycles, capacitance retention is as large as 98.4%, indicating a high stability of the electrode. Therefore, DMPC is an excellent material for the electrodes of practical electric double-layer capacitors.

Publisher's Statement

© 2018 American Chemical Society. Publisher's version of record:

Publication Title

ACS Applied Materials & Interfaces