Title

A Connected Controls and Optimization System for Vehicle Dynamics and Powertrain Operation on a Light-Duty Plug-In Multi-Mode Hybrid Electric Vehicle

Document Type

Conference Proceeding

Publication Date

4-14-2020

Department

Department of Mechanical Engineering-Engineering Mechanics

Abstract

© 2020 SAE International. All Rights Reserved. This paper presents an overview of the connected controls and optimization system for vehicle dynamics and powertrain operation on a light-duty plug-in multi-mode hybrid electric vehicle developed as part of the DOE ARPA-E NEXTCAR program by Michigan Technological University in partnership with General Motors Co. The objective is to enable a 20% reduction in overall energy consumption and a 6% increase in electric vehicle range of a plug-in hybrid electric vehicle through the utilization of connected and automated vehicle technologies. Technologies developed to achieve this goal were developed in two categories, the vehicle control level and the powertrain control level. Tools at the vehicle control level include Eco Routing, Speed Harmonization, Eco Approach and Departure and in-situ vehicle parameter characterization. Tools at the powertrain level include PHEV mode blending, predictive drive-unit state control, and non-linear model predictive control powertrain power split management. These tools were developed with the capability of being implemented in a real-time vehicle control system. As a result, many of the developed technologies have been demonstrated in real-time using a fleet of four instrumented Chevrolet Volts which are equipped with on-board sensors, rapid prototyping embedded controllers, and V2X communication devices. This paper provides an overview of each tool developed, its implementation, energy reduction in isolation, and the net energy reduction of various tool combinations. A breakdown of the energy savings and range extension possible for the connected vehicle control and optimization tool set is provided which shows energy reduction benefits approaching 20% and range extension upwards of 8%, dependent on the driving and traffic scenarios and initial vehicle state of charge.

Publication Title

SAE Technical Papers

Share

COinS