Detecting Dynamic Attacks in Smart Grids Using Reservoir Computing: A Spiking Delayed Feedback Reservoir Based Approach

Document Type


Publication Date



Department of Electrical and Computer Engineering


Spiking neural networks have been widely used for supervised pattern recognition exploring the underlying spatio-temporal correlation. Meanwhile, spatio-temporal correlation manifests significantly between different components in a smart grid making the spiking neural network a desirable candidate for false data injection attack detection. In this paper, we develop a spiking-neural-network-based technique for dynamic cyber-attack detection in a smart grid. This is achieved through judiciously integrating spiking neurons with a special recurrent neural network called the delayed feedback reservoir computing. The inter-spike interval encoding is also explored in the precise-spike-driven synaptic plasticity based training process. The simulation results suggest that the introduced method outperforms multi-layer perceptrons and can achieve a significantly better performance compared to the state-of-the-art techniques. Furthermore, our analysis indicates that the delay value in the delayed feedback reservoir will have a substantial impact on the overall system performance.

Publisher's Statement

© 2017 IEEE. Publisher’s version of record:

Publication Title

IEEE Transactions on Emerging Topics in Computational Intelligence