Document Type


Publication Date



Department of Civil and Environmental Engineering


As a natural modifier of asphalt, rock asphalt has been widely used to improve its thermal stability and aging resistance. However, the thermal cracking resistance of asphalt modified by rock asphalt is unsatisfactory. In order to improve the thermal cracking resistance in low temperature, two kinds of modifiers—styrene–butadiene rubber (SBR) and nano-CaCO3—were selected as the compound modifiers, and then implemented to improve the low-temperature performance of the binder. Then, compound asphalt modified by Buton rock asphalt (BRA) was chosen as the study subject. The thermal stability and aging resistance of asphalt modified by BRA, compound-modified asphalt by BRA/SBR, and compound-modified asphalt by BRA and nano-CaCO3 were determined to identify whether the compound modifiers in the asphalt would have a negative effect on the thermal stability and aging resistance of the asphalt. The dynamic shear rheometer (DSR) test was employed to evaluate the thermal stability. The thin film oven test (TFOT) and pressure aging vessel (PAV) were adopted to determine the aging resistance. The viscoelastic characteristics of asphalt with and without modifiers were revealed to evaluate the low-temperature crack resistance of asphalt modified by compound modifiers. The bending beam rheometer (BBR) creep test was conducted in three test temperatures in order to determine the creep stiffness modulus of the BRA compound-modified asphalt. The viscoelastic model considering the damage caused by loading was established; then, the creep compliance and parameters of the viscoelastic damage model were implemented to evaluate the low-temperature performance of the compound-modified asphalt. The results show that the compound modifiers have little negative effects on the thermal stability and aging resistance of asphalt. The thermal crack resistance of the compound-modified asphalt by BRA/SBR was the best, followed by the compound-modified asphalt by BRA and nano-CaCO3 within the three materials. The accuracy of forecasting the characteristics of compound-modified asphalt was improved by using the viscoelastic model and considering the damage effect.

Publisher's Statement

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( Publisher’s version of record:

Publication Title

Applied Sciences

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.


Publisher's PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.