Document Type


Publication Date



Department of Biomedical Engineering; Department of Materials Science and Engineering


Platinum-containing stents are commonly used in humans with hypercholesterolemia, whereas preclinical stent evaluation has commonly been performed in healthy animal models, providing inadequate information about stent performance under hypercholesterolemic conditions. In this investigation, we used an ApoE−/− mouse model to test the impact of hypercholesterolemia on neointima formation on platinum-containing implants. We implanted 125 μm diameter platinum wires into the abdominal aortas of ApoE−/− and ApoE+/+ mice for 6 months, followed by histological and immunofluorescence examination of neointimal size and composition. It was found that ApoE−/− mice developed neointimas with four times larger area and ten times greater thickness than ApoE+/+ counterparts. Neointimas developed in the ApoE−/− mice also contained higher amounts of lipids quantified as having 370 times more coverage compared to ApoE+/+, a 3-fold increase in SMCs, and a 22-fold increase in macrophages. A confluent endothelium had regenerated in both mouse strains. The ApoE−/− mice experienced luminal reductions more closely resembling clinically relevant restenosis in humans. Overall, the response to platinum arterial implants was highly dependent upon the atherogenic environment.

Publisher's Statement

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. Publisher’s version of record:

Publication Title


Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Publisher's PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.