Document Type


Publication Date



College of Forest Resources and Environmental Science


The long-term effects of harvesting on stand carbon (C) pools were assessed in a dry, interior pine-dominated forest at the Blacks Mountain Experimental Forest in northeastern California. Six 8-hectacre plots, established in 1938–1943, were treated as either an uncut control or a heavy-cut harvest (three-quarters of the stand volume removed). Response variables included C pools in overstory tree and shrub, coarse woody debris (CWD), forest floor, mineral soil (to 30 cm depth), cubicle brown root fragments of wood, fine roots, and ectomycorrhizal root tips. CWD was further classified as intact wood or more highly decayed brown rot or white rot types. CWD nutrient stocks (N, P, K, Ca, and Mg) and soil N content were also measured. In 1992, 50 years after harvest, total ecosystem C was 188 and 204 Mg C ha−1 in the harvest and control treatments or 8% lower (p = 0.02) in the harvest stands. There were changes in the distributions of C pools between the treatments. After 50 years of recovery, most C pools showed statistically non-significant and essentially no change in C pool size from harvests. Notable reductions in C with harvests were declines of 43% in CWD including standing snags (p = 0.09) and a decline of 9% of live tree C (p = 0.35). Increases in C pools after harvest were in a 3-fold build-up of fragmented brown cubicle rot (p = 0.26) and an 11% increase in soil C (p = 0.19). We observed strong evidence of C transfers from CWD to soil C pools with two- to three-fold higher soil C and N concentrations beneath CWD compared to other cover types, and lower CWD pools associated with elevated cubicle brown rot are elevated soil C in the harvests. Our results showed that while harvest effects were subtle after 50 years of regrowth, CWD may play an important role in storing and transferring ecosystem C to soils during recovery from harvesting in these dry, eastside pine forests of California. This poses a tradeoff for managers to choose between keeping CWD for its contribution to C sequestration and its removal as the hazardous fuels.

Publisher's Statement

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. Publisher’s version of record:

Publication Title


Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Publisher's PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.