Document Type


Publication Date



Department of Physics; Department of Computer Science


With the technological advancement in recent years and the widespread use of magnetism in every sector of the current technology, a search for a low-cost magnetic material has been more important than ever. The discovery of magnetism in alternate materials such as metal chalcogenides with abundant atomic constituents would be a milestone in such a scenario. However, considering the multitude of possible chalcogenide configurations, predictive computational modeling or experimental synthesis is an open challenge. Here, we recourse to a stacked generalization machine learning model to predict magnetic moment (µB) in hexagonal Fe-based bimetallic chalcogenides, FexAyB; A represents Ni, Co, Cr, or Mn, and B represents S, Se, or Te, and x and y represent the concentration of respective atoms. The stacked generalization model is trained on the dataset obtained using first-principles density functional theory. The model achieves MSE, MAE, and R2 values of 1.655 (µB)2, 0.546 (µB), and 0.922 respectively on an independent test set, indicating that our model predicts the compositional dependent magnetism in bimetallic chalcogenides with a high degree of accuracy. A generalized algorithm is also developed to test the universality of our proposed model for any concentration of Ni, Co, Cr, or Mn up to 62.5% in bimetallic chalcogenides.

Publication Title

Scientific Reports

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Publisher's PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.