Document Type

Article

Publication Date

1-25-2020

Department

Department of Mechanical Engineering-Engineering Mechanics

Abstract

A microgrid consists of electrical generation sources, energy storage assets, loads, and the ability to function independently, or connect and share power with other electrical grids. Thefocus of this work is on the behavior of a microgrid, with both diesel generator and photovoltaic resources, whose heating or cooling loads are influenced by local meteorological conditions. Themicrogrid's fuel consumption and energy storage requirement were then examined as a function of the atmospheric conditions used by its energy management strategy (EMS). A fuel-optimal EMS, able to exploit meteorological forecasts, was developed and evaluated using a hybrid microgrid simulation. Weather forecast update periods ranged from 15 min to 24 h. Four representative meteorological sky classifications (clear, partly cloudy, overcast, or monsoon) were considered. Forall four sky classifications, fuel consumption and energy storage requirements increased linearly with the increasing weather forecast interval. Larger forecast intervals lead to degraded weather forecasts, requiring more frequent charging/discharging of the energy storage, increasing both the fuel consumption and energy storage design requirements. The significant contributions of this work include the optimal EMS and an approach for quantifying the meteorological forecast effects on fuel consumption and energy storage requirements on microgrid performance. The findings of this study indicate that the forecast interval used by the EMS affected both fuel consumption and energy storage requirements, and that the sensitivity of these effects depended on the 24-hour sky conditions.

Publisher's Statement

c 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Publisher’s version of record: https://doi.org/10.3390/en13030577

Publication Title

Energies

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.