Highly stable potassium metal batteries enabled by regulating surface chemistry in ether electrolyte

Document Type


Publication Date



Department of Physics


Rechargeable potassium (K) metal batteries (PMBs) remain deeply challenged by the lack of suitable electrolytes that are stable against both highly reactive K anodes and 4 V-class cathodes. Despite their good reductive stability with K metal, classic potassium bis(fluorosulfonyl)amide (KFSI)-based ether electrolytes are typically used only in 3 M), is reported for the first time to be used in 4 V-class PMBs. A stable N/F-rich solid electrolyte interphase (SEI) is formed, enabling dense and uniform K deposition, especially under high current density. Remarkably, the PMBs with Prussian blue cathode exhibits an unprecedented cycle life (1000 cycles, 122 days). This work provides new perspectives of electrolyte design for 4 V-class PMBs.

Publication Title

Energy Storage Materials