Document Type


Publication Date



Department of Civil, Environmental, and Geospatial Engineering


In many developing countries, plastic waste management is left to citizens. This usually results in landfilling or hazardous open-air burning, leading to emissions that are harmful to human health and the environment. An easy, profitable, and clean method of processing and transforming the waste into value is required. In this context, this study provides an open-source methodology to transform low-density polyethylene drinking water sachets, into pavement blocks by using a streamlined do-it-yourself approach that requires only modest capital. Two different materials, sand, and ashes are evaluated as additives in plastic composites and the mechanical strength of the resulting blocks are tested for different proportion mix of plastic, sand, and ash. The best composite had an elastic modulus of 169 MPa, a compressive strength of 29 MPa, and a water absorptivity of 2.2%. The composite pavers can be sold at 100% profit while employing workers at 1.5× the minimum wage. In the West African region, this technology has the potential to produce 19 million pavement tiles from 28,000 tons of plastic water sachets annually in Ghana, Nigeria, and Liberia. This can contribute to waste management in the region while generating a gross revenue of 2.85 billion XOF (4.33 million USD).

Publisher's Statement

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. Publisher’s version of record:

Publication Title

Journal of Composites Science

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Publisher's PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.