Document Type


Publication Date



Department of Physics


Two-dimensional (2D) hybrid halide perovskites have been scrutinized as candidate materials for solar cells because of their tunable structural and compositional properties. Results based on density functional theory demonstrate its thickness-dependent stability. We have observed that the bandgap decreases from the mono- to quad-layer because of the transformation from 2D towards 3D. Due to the transformation, the carrier mobility is lowered with the corresponding smaller effective mass. On the other hand, the multilayer structures have good optical properties with an absorption coefficient of about 105 cm−1. The calculated absorption spectra lie between 248 nm and 496 nm, leading to optical activity of the 2D multilayer CH3NH3PbI3 systems in the visible and ultraviolet regions. The strength of the optical absorption increases with an increase in thickness. Overall results from this theoretical study suggest that this 2D multilayer CH3NH3PbI3 is a good candidate for photovoltaic and optoelectronic device applications.

Publisher's Statement

© 2022 The Author(s). Published by the Royal Society of Chemistry. Publisher’s version of record:

Publication Title

RSC Advances

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.


Publisher's PDF

Included in

Physics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.