Document Type


Publication Date



Department of Geological and Mining Engineering and Sciences


The ever-increasing recovery rate of natural resources from terrestrial impact craters over the last few decades across the globe offers new avenues for further exploration of mineral and hydrocarbon resources in such settings. As of today, 60 of the 208 terrestrial craters have been identified to host diverse resources such as hydrocarbons, metals and construction materials. The potential of craters as plausible resource contributors to the energy sector is therefore, worthy of consideration, as 42 (70%) of the 60 craters host energy resources such as oil, gas, coal, uranium, mercury, critical and major minerals as well as hydropower resources. Among others, 19 craters are of well-developed hydrocarbon reserves. Mineral deposits associated with craters are also classified similar to other mineral resources such as progenetic, syngenetic and epigenetic sources. Of these, the progenetic and syngenetic mineralization are confined to the early and late excavation stage of impact crater evolution, respectively, whereas epigenetic deposits are formed during and after the modification stage of crater formation. Thus, progenetic and syngenetic mineral deposits (like Fe, Ni, Pb, Zn and Cu) associated with craters are formed as a direct result of the impact event, whereas epigenetic deposits (e.g. hydrocarbon) are hosted by the impact structure and result from post-impact processes. In the progenetic and syngenetic deposits, the shock-wave induced fracturing and melting aid the formation of deposits, whereas in the epigenetic deposits, the highly fractured lithostratigraphic units of higher porosity and permeability, like the central elevated area (CEA) or the rim, act as traps. In this review, we provide a holistic view of the mineral and energy resources associated with impact craters, and use some of the remote sensing techniques to identify the mineral deposits as supplemented by a schematic model of the types of deposits formed during cratering process.

Supporting Data

© 2021 Sinopec Petroleum Exploration and Production Research Institute. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. Publisher’s version of record:

Publication Title

Energy Geoscience


Publisher's PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.