Title

Predictors of taxonomic and functional composition of black spruce seedling ectomycorrhizal fungal communities along peatland drainage gradients

Document Type

Article

Publication Date

1-16-2022

Department

College of Forest Resources and Environmental Science

Abstract

Many trees depend on symbiotic ectomycorrhizal fungi for nutrients in exchange for photosynthetically derived carbohydrates. Trees growing in peatlands, which cover 3% of the earth’s terrestrial surface area yet hold approximately one-third of organic soil carbon stocks, may benefit from ectomycorrhizal fungi that can efficiently forage for nutrients and degrade organic matter using oxidative enzymes such as class II peroxidases. However, such traits may place a higher carbon cost on both the fungi and host tree. To investigate these trade-offs that might structure peatland ectomycorrhizal fungal communities, we sampled black spruce (Picea mariana (Mill.)) seedlings along 100-year-old peatland drainage gradients in Minnesota, USA, that had resulted in higher soil nitrogen and canopy density. Structural equation models revealed that the relative abundance of the dominant ectomycorrhizal fungal genus, Cortinarius, which is known for relatively high fungal biomass coupled with elevated class II peroxidase potential, was negatively linked to site fertility but more positively affected by recent host stem radial growth, suggesting carbon limitation. In contrast, Cenococcum, known for comparatively lower fungal biomass and less class II peroxidase potential, was negatively linked to host stem radial growth and unrelated to site fertility. Like Cortinarius, the estimated relative abundance of class II peroxidase genes in the ectomycorrhizal community was more related to host stem radial growth than site fertility. Our findings indicate a trade-off between symbiont foraging traits and associated carbon costs that consequently structure seedling ectomycorrhizal fungal communities in peatlands.

Publication Title

Mycorrhiza

Share

COinS