Title

Deepnglypred: A deep neural network-based approach for human n-linked glycosylation site prediction

Document Type

Article

Publication Date

12-1-2021

Abstract

Protein N-linked glycosylation is a post-translational modification that plays an important role in a myriad of biological processes. Computational prediction approaches serve as comple-mentary methods for the characterization of glycosylation sites. Most of the existing predictors for N-linked glycosylation utilize the information that the glycosylation site occurs at the N-X-[S/T] se-quon, where X is any amino acid except proline. Not all N-X-[S/T] sequons are glycosylated, thus the N-X-[S/T] sequon is a necessary but not sufficient determinant for protein glycosylation. In that regard, computational prediction of N-linked glycosylation sites confined to N-X-[S/T] sequons is an important problem. Here, we report DeepNGlyPred a deep learning-based approach that encodes the positive and negative sequences in the human proteome dataset (extracted from N-GlycositeAtlas) using sequence-based features (gapped-dipeptide), predicted structural features, and evolutionary information. DeepNGlyPred produces SN, SP, MCC, and ACC of 88.62%, 73.92%, 60%, and 79.41%, respectively on N-GlyDE independent test set, which is better than the compared approaches. These results demonstrate that DeepNGlyPred is a robust computational technique to predict N-Linked glycosylation sites confined to N-X-[S/T] sequon. DeepNGlyPred will be a useful resource for the glycobiology community.

Publication Title

Molecules

Share

COinS