Document Type


Publication Date



Department of Computer Science; Department of Geological and Mining Engineering and Sciences


Soil strength characterization is essential for any problem that deals with geomechanics, including terramechanics/terrain mobility. Presently, the primary method of collecting soil strength parameters through in situ measurements but sending a team of people out to a site to collect data this has significant cost implications and accessing the location with the necessary equipment can be difficult. Remote sensing provides an alternate approach to in situ measurements. In this lab study, we compare the use of Apparent Thermal Inertia (ATI) against a GeoGauge for the direct testing of soil stiffness. ATI correlates with stiffness, so it allows one to predict the soil strength remotely using machine-learning algorithms. The best performing regression algorithm among the ones tested with different predictor variable combinations was found to be KNN with an R2 of 0.824 and a RMSE of 0.141. This study demonstrates the potential for using remote sensing to acquire thermal images that characterize terrain strength for mobility utilizing different machine-learning algorithms.

Publisher's Statement

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// 4.0/). Publisher’s version of record:

Publication Title

Remote Sensing

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Publisher's PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.