Document Type


Publication Date



Department of Mechanical Engineering-Engineering Mechanics


Resin/reinforcement wetting is a key parameter in the manufacturing of carbon nanotube (CNT)-based composite materials. Determining the contact angle between combinations of liquid resin and reinforcement surfaces is a common method for quantifying wettability. As experimental measurement of contact angle can be difficult when screening multiple high-performance resins with CNT materials such as CNT bundles or yarns, computational approaches are necessary to fa-cilitate CNT composite material design. A molecular dynamics simulation method is developed to predict the contact angle of high-performance polymer resins on CNT surfaces dominated by aromatic carbon, aliphatic carbon, or a mixture thereof (amorphous carbon). Several resin systems are simulated and compared. The results indicate that the monomer chain length, chemical groups on the monomer, and simulation temperature have a significant impact on the predicted contact angle values on the CNT surface. Difunctional epoxy and cyanate ester resins show the overall highest levels of wettability, regardless of the aromatic/aliphatic nature of the CNT material surface. Tetra-functional epoxy demonstrates excellent wettability on aliphatic-dominated surfaces at elevated temperatures. Bismaleimide and benzoxazine resins show intermediate levels of wetting, while typ-ical molecular weights of polyether ether ketone demonstrate poor wetting on the CNT surfaces.

Publisher's Statement

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// 4.0/). Publisher’s version of record:

Publication Title


Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Publisher's PDF



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.