Title

Effect of Left and Right Coronary Flow Waveforms on Aortic Sinus Hemodynamics and Leaflet Shear Stress: Correlation with Calcification Locations

Document Type

Article

Publication Date

11-3-2020

Department

Department of Biomedical Engineering

Abstract

Coronary flow induces hemodynamic alterations in the aortic sinus region. The objectives of this study are to: (1) investigate the differences among sinus hemodynamics and leaflet wall shear stresses engendered by the left versus right versus non-coronary flow and (2) correlate respective wall shear stresses with leaflet calcification in patients. A left heart simulator flow loop with a tunable coronary circuit provided physiological coronary flow waveforms corresponding to the left coronary cusp case (LCC), right coronary cusp case (RCC), and non-coronary cusp case (NCC). High spatio-temporal resolution particle image velocimetry was conducted to quantify leaflet wall shear stress and sinus vorticity fields and to measure aortic leaflet tip kinematics. Thirty-one patients with severe calcific aortic valve disease were segmented from CT data for the calcific volumes in their respective left, right, and non-coronary cusps. Leaflet tip position during systole shows the RCC has a wider leaflet opening compared to LCC and NCC. Velocity and vorticity fields combined with leaflet position data show that sinus vorticity is diminished (peak ~ 43 s−1) in the LCC while RCC and NCC maintain high vorticity (~ 1200 and ~ 950 s−1 respectively). WSS magnitudes greater than 0.3 Pa show 20 and 81% greater occurrences in the LCC and RCC respectively compared to NCC. Significant differences [X2 (2, n = 31) = 7.31, p = 0.0258] between the calcification levels in each cusp of the patient population. Coronary flow differences between LCC, RCC, and NCC show significant impact on leaflet kinematics and sinus flow hemodynamics. Clinical data correlations of the coronary flow cases indicate the left coronary cusp has a higher likelihood of calcification compared to the right.

Publisher's Statement

© 2020, Biomedical Engineering Society. Publisher’s version of record: https://doi.org/10.1007/s10439-020-02677-9

Publication Title

Annals of Biomedical Engineering

Share

COinS