Document Type

Article

Publication Date

11-16-2020

Department

Department of Geological and Mining Engineering and Sciences

Abstract

Event-based landslide inventories are important for analyzing the relationship between the intensity of the trigger (e.g., rainfall, earthquake) and the density of the landslides in a particular area as a basis for the estimation of the landslide probability and the conversion of susceptibility maps into hazard maps required for risk assessment. They are also crucial for the establishment of local rainfall thresholds that are the basis of early warning systems and for evaluating which land use and land cover changes are related to landslide occurrence. The completeness and accuracy of event-based landslide inventories are crucial aspects to derive reliable results or the above types of analyses. In this study, we generated a relatively complete landslide inventory for the 2018 monsoon landslide event in the state of Kerala, India, based on two inventories that were generated using different methods: one based on an object-based image analysis (OBIA) and the other on field surveys of damaging landslides. We used a collaborative mapping approach based on the visual interpretation of pre- and post-event high-resolution satellite images (HRSIs) available from Google Earth, adjusted the two inventories, and digitized landslides that were missed in the two inventories. The reconstructed landslide inventory database contains 4728 landslides consisting of 2477 landslides mapped by the OBIA method, 973 landslides mapped by field survey, 422 landslides mapped both by OBIA and field methods, and an additional 856 landslides mapped using the visual image (Google Earth) interpretation. The dataset is available at line"uri">https://doi.org/10.17026/dans-x6c-y7x2> (van Westen, 2020). Also, the location of the landslides was adjusted, based on the image interpretation, and the initiation points were used to evaluate the land use and land cover changes as a causal factor for the 2018 monsoon landslides. A total of 45 % of the landslides that damaged buildings occurred due to cut-slope failures, while 34 % of those having an impact on roads were due to road cut-slope failures. The resulting landslide inventory is made available for further studies.

.

Publisher's Statement

© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License. Publisher’s version of record: https://doi.org/10.5194/essd-12-2899-2020

Publication Title

Earth System Science Data

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.