Document Type

Article

Publication Date

12-1-2020

Department

Department of Mechanical Engineering-Engineering Mechanics

Abstract

Quark nuggets are theoretical objects composed of approximately equal numbers of up, down, and strange quarks. They are also called strangelets, nuclearites, AQNs, slets, Macros, and MQNs. Quark nuggets are a candidate for dark matter, which has been a mystery for decades despite constituting ~ 85% of the universe’s mass. Most previous models of quark nuggets have assumed no intrinsic magnetic field; however, Tatsumi found that quark nuggets may exist in magnetars as a ferromagnetic liquid with a magnetic field BS = 1012±1 T. We apply that result to quark nuggets, a dark-matter candidate consistent with the Standard Model, and report results of analytic calculations and simulations that show they spin up and emit electromagnetic radiation at ~ 104 to ~ 109 Hz after passage through planetary environments. The results depend strongly on the value of Bo, which is a parameter to guide and interpret observations. A proposed sensor system with three satellites at 51,000 km altitude illustrates the feasibility of using radio-frequency emissions to detect 0.003 to 1,600 MQNs, depending on Bo, during a 5 year mission.

Publisher's Statement

© 2020, The Author(s). Publisher’s version of record: https://doi.org/10.1038/s41598-020-70718-3

Publication Title

Scientific Reports

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Version

Publisher's PDF

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.