Leveraging connectivity and automation to improve propulsion system energy sufficiency

Document Type

Conference Proceeding

Publication Date



Department of Mechanical Engineering-Engineering Mechanics


The use of connectivity and automation in mobility applications is rapidly increasing and being introduced into propulsion system controls to reduce energy consumption. With support from the US Department of Energy’s, ARPA-E agency and in partnership with General Motors, the Chevrolet Volt, generation II, is studied and tested for the benefits of Connected and Automated Vehicle (CAV) control applied to Vehicle Dynamics and Powertrain (VD&PT) to reduce energy consumption by 20% in real world driving scenarios. This investigation looks at application of model predictive control, energy utilization forecasting and external data regarding traffic and infrastructure to develop a mission profile for propulsion system and vehicle dynamics. Both a long and short prediction time horizon are created for propulsion system operation, determining blending of charge depleting and charge sustaining, with the objective of reducing the total energy utilized for the trip by upwards of 20%. The presentation/paper will present the VD&PT model predictive control methodology being developed as a supervisory controller and/or driver assistant. Measured data from a test fleet of generation 2 Chevrolet Volts will also be presented illustrating the benefits of CAV on a single vehicle on real world driving cycle. The experimental results cover a range of driving conditions, from rural to heavy urban; representing the potential reduction in energy consumption CAV control can provide a plugin hybrid electric propulsion system architecture.

Publication Title