microRNA-dependent gene regulatory networks in maize leaf senescence

Document Type

Article

Publication Date

3-22-2016

Abstract

© 2016 Wu et al. Background: Maize grain yield depends mainly on the photosynthetic efficiency of functional leaves, which is controlled by an array of gene networks and other factors, including environmental conditions. MicroRNAs (miRNAs) are small RNA molecules that play important roles in plant developmental regulation. A few senescence-associated miRNAs (SA-miRNAs) have been identified as important participants in regulating leaf senescence by modulating the expression levels of their target genes. Results: To elucidate miRNA roles in leaf senescence and their underlying molecular mechanisms in maize, a stay-green line, Yu87-1, and an early leaf senescence line, Early leaf senescence-1 (ELS-1), were selected as experimental materials for the differential expression of candidate miRNAs. Four small RNA libraries were constructed from ear leaves at 20 and 30 days after pollination and sequenced by Illumina deep sequencing technology. Altogether, 81 miRNAs were detected in both lines. Of these, 16 miRNAs of nine families were differentially expressed between ELS-1 andYu87-1. The phenotypic and chlorophyll content analyses of both lines identified these 16 differentially expressed miRNAs as candidate SA-miRNAs. Conclusions: In this study, 16 candidate SA-miRNAs of ELS-1 were identified through small RNA deep sequencing technology. Degradome sequencing results indicated that these candidate SA-miRNAs may regulate leaf senescence through their target genes, mainly transcription factors, and potentially control chlorophyll degradation pathways. The results highlight the regulatory roles of miRNAs during leaf senescence in maize.

Publication Title

BMC Plant Biology

Share

COinS