Efficiency of nanotube surface-treated dental implants loaded with doxycycline on growth reduction of Porphyromonas gingivalis

Document Type


Publication Date



© 2017 by Quintessence Publishing Co Inc. Purpose: The prevalence of peri-implant infection in patients with dental implants has been shown to range from 28% to 56%. A nanotube-modified implant surface can deliver antibiotics locally and suppress periodontal pathogenic bacterial growth. The aim of this study was to evaluate the deliverability of antibiotics via a nanotube-modified implant. Materials and Methods: Dental implants with a nanotube surface were fabricated and loaded with doxycycline. Afterward, each dental implant with a nanotube surface was placed into 2-mL tubes, removed from solution, and placed in a fresh solution daily for 28 days. Experimental samples from 1, 2, 4, 16, 24, and 28 days were used for this evaluation. The concentration of doxycycline was measured using spectrophotometric analysis at 273-nm absorbance. The antibacterial effect of doxycycline was evaluated by supplementing Porphyromonas gingivalis (P gingivalis) growth media with the solution collected from the dental implants at the aforementioned time intervals for a period of 48 hours under anaerobic conditions. A bacterial viability assay was used to evaluate P gingivalis growth at 550-nm absorbance. Results: Doxycycline concentration varied from 0.33 to 1.22 μg/mL from day 1 to day 28, respectively. A bacterial viability assay showed the highest P gingivalis growth at day 1 (2 nm) and the lowest at day 4 (0.17 nm), with a gradual reduction from day 1 to day 4 of approximately 87.5%. The subsequent growth pattern was maintained and slightly increased from baseline in approximately 48.3% from day 1 to day 24. The final P gingivalis growth measured at day 28 was 29.4% less than the baseline growth. Conclusion: P gingivalis growth was suppressed in media supplemented with solution collected from dental implants with a nanotube surface loaded with doxycycline during a 28-day time interval.

Publication Title

International Journal of Oral and Maxillofacial Implants