Chemical inertness of UV-cured optical elastomers within the printed circuit board manufacturing process for embedded waveguide applications

Document Type

Conference Proceeding

Publication Date



Embedding polymer optical waveguides (WGs) into printed circuit boards (PCBs) for intra-board or board-to-board high speed data communications requires polymer materials that are compatible and inert when exposed to common PCB manufacturing processes. Ensuring both WG functionality after chemical exposure and maintaining PCB manufacturing integrities within the production process is crucial for successful implementation. The PCB manufacturing flow is analyzed to expose major requirements that would be required for the successful implementation of polymer materials for embedded WG development. Chemical testing and analysis were performed on Dow Corning ® OE-4140 UV-Cured Optical Elastomer Core and Dow Corning® OE-4141 UV-Cured Optical Elastomer Cladding which are designed for low loss embedded optical WGs. Contamination testing was conducted to demonstrate polymer compatibility in both cured and uncured form. Various PCB chemicals were treated with uncured polymer material and tested for effective contamination. Fully polymerized multimode WGs were fabricated and exposed to PCB chemicals at temperatures and durations comparable to PCB manufacturing conditions. Chemical analysis shows that the chosen polymer is compatible and inert with most common PCB manufacturing processes. © 2014 SPIE.

Publication Title

Proceedings of SPIE - The International Society for Optical Engineering