Title

An evaluation of anisotropic effective stress-strain criteria for the biaxial yield and flow of 2024 aluminum tubes

Document Type

Article

Publication Date

1-1-1983

Abstract

2024 aluminum tubes, heat treated to a T6 and T8 temper, were tested in combinations of tension-internal pressure and tension-torsion loading. Yield loci and flow behavior were determined for both modes of loading and compared to theoretical predictions. Both tempers of 2024 aluminum exhibited crystallographic textures and anisotropic yield and flow. Hill’s quadratic yield criterion and the associated flow rule under-estimate balanced biaxial yield and flow, which is consistent with hydraulic bulge data on other face-centered cubic metals. Hill’s nonquadratic criterion, which adds one additional parameter, and Bassani’s criterion, which adds two parameters, predict the anisotropic yield behavior much more accurately. Predictions of the complete flow behavior, including strain paths, with these anisotropic criteria could be improved markedly by including provisions for planar anisotropy. © 1983 by ASME.

Publication Title

Journal of Engineering Materials and Technology, Transactions of the ASME

Share

COinS