Constitutive modeling of electrostrictive polymers using a hyperelasticity-based approach

Document Type


Publication Date



The use of constitutive equations to describe the electromechanical behavior of electrostrictive materials began over 100 years ago. While these equations have been used to model a host of ceramic-based and polymer-based electroactive materials, a fully characterized model has not yet been developed to predict the response of transversely isotropic polymer electrostrictives. A constitutive model is developed within a thermodynamic and hyperelastic framework that incorporates the transversely isotropic material symmetry that is present in many polymer-based electrostrictives. The resulting constitutive model is characterized for three electrostrictive polymer systems using empirical data that are available in the literature. The model has a relatively simple functional form that is easily adaptable to other polymer electrostrictive material systems. Copyright © 2010 by ASME.

Publication Title

Journal of Applied Mechanics, Transactions ASME