An adaptive graph sparsification approach to scalable harmonic balance analysis of strongly nonlinear post-layout RF circuits

Document Type


Publication Date



Department of Electrical and Computer Engineering, Center for Scalable Architectures and Systems


In the past decades, harmonic balance (HB) has been widely used for computing steady-state solutions of nonlinear radio-frequency (RF) and microwave circuits. However, using HB for simulating strongly nonlinear post-layout RF circuits still remains a very challenging task. Although direct solution methods can be adopted to handle moderate to strong nonlinearities in HB analysis, such methods do not scale efficiently with large-scale problems due to excessively long simulation time and prohibitively large memory consumption. In this paper, we present a novel graph sparsification approach for automatically generating preconditioners that can be efficiently applied for simulating strongly nonlinear post-layout RF circuits. Our approach allows to sparsify time-domain circuit modified nodal analysis matrices that can be subsequently leveraged for sparsifying the entire HB Jacobian matrix. We show that the resultant sparsified Jacobian matrix can be used as a robust yet efficient preconditioner in HB analysis. Our experimental results show that when compared with the prior state-of-the-art direct solution method, the proposed solver can more efficiently handle moderate to strong nonlinearities during the HB analysis of RF circuits, achieving up to 20× speedups and 6× memory reductions.

Publication Title

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems