3D underwater sensor network localization

Document Type


Publication Date



We transform the 3D underwater sensor network (USN) localization problem into its 2D counterpart by employing sensor depth information and a simple projection technique. We first prove that a nondegenerative projection preserves network localizability. We then prove that given a network and a constant k, all of the geometric k-lateration localization methods are equivalent. Based on these results, we design a purely distributed bilateration localization scheme for 3D USNs termed as Underwater Sensor Positioning (USP). Through extensive simulations, we show that USP has the following nice features: 1) improved localization capabilities over existing 3D methods, 2) low storage and computation requirements, 3) predictable and balanced communication overhead, and 4) robustness to errors from the underwater environment. © 2006 IEEE.

Publication Title

IEEE Transactions on Mobile Computing